Journal of Global Infectious DiseasesOfficial Publishing of INDUSEM and OPUS 12 Foundation, Inc. Users online:4137  
Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size     
Home About us Editors Ahead of Print Current Issue Archives Search Instructions Subscribe Advertise Login 
 


 
   Table of Contents     
ORIGINAL ARTICLE  
Year : 2021  |  Volume : 13  |  Issue : 2  |  Page : 67-71
Incidence of secondary bacterial infections following utilization of tocilizumab for the treatment of COVID-19 – A matched retrospective cohort study


1 Department of Medicine, Nuvance Health, University of Vermont School of Medicine, Norwalk, Connecticut, USA
2 Department of Innovation and Research, Nuvance Health, Danbury, Connecticut, USA
3 Department of Pulmonary and Critical Care, Yale School of Medicine, University of Vermont School of Medicine, Nuvance Health, Norwalk, Connecticut, USA

Click here for correspondence address and email

Date of Submission07-Oct-2020
Date of Acceptance18-Jan-2021
Date of Web Publication22-Mar-2021
 

   Abstract 


Introduction: Immunosuppressive agents are theorized to target the cytokine storm syndrome in COVID-19. However, the downstream effects regarding susceptibilities to secondary infection risk remains unknown. This study seeks to determine risk differences for secondary infections among COVID-19 patients who did and did not receive tocilizumab. Methods: We conducted a matched retrospective cohort study from two large, acute care hospitals in Western Connecticut from March 1, to May 31, 2020. We collected variables using manual medical record abstraction. The primary exposure variable was any dose of tocilizumab. The primary outcome was any healthcare-associated bacterial or fungal infection as defined by the National Healthcare Safety Network. We performed a Kaplan–Meier analysis to assess the crude difference in cumulative probability of healthcare-associated infection (HAI) across exposure groups. We also performed a multivariable Cox regression analysis to determine the hazard ratio for HAI by exposure group while controlling for potential confounders. Results: The Kaplan–Meier analysis demonstrated no difference in the cumulative probability of HAI across groups. The adjusted hazard of HAI for patients given tocilizumab was 0.85 times that of patients not given tocilizumab (95% confidence interval = 0.29, 2.52, P = 0.780) after controlling for relevant confounders. Conclusions: Tocilizumab did not increase the incidence of secondary infection among COVID-19 patients. Larger, randomized trials should evaluate infection as a secondary outcome to validate this finding.

Keywords: Coronavirus, COVID-19, IL-6, SARS-CoV-2, secondary infection, tocilizumab

How to cite this article:
Moore JL, Stroever SJ, Rondain PE, Scatena RN. Incidence of secondary bacterial infections following utilization of tocilizumab for the treatment of COVID-19 – A matched retrospective cohort study. J Global Infect Dis 2021;13:67-71

How to cite this URL:
Moore JL, Stroever SJ, Rondain PE, Scatena RN. Incidence of secondary bacterial infections following utilization of tocilizumab for the treatment of COVID-19 – A matched retrospective cohort study. J Global Infect Dis [serial online] 2021 [cited 2021 Sep 21];13:67-71. Available from: https://www.jgid.org/text.asp?2021/13/2/67/311620





   Introduction Top


Coronavirus-19 (COVID-19) is a novel viral infection that surged early in 2020 with limited evidence of effective treatment strategies.[1] The virus may result in asymptomatic to mild cases but is also capable of causing severe disease with high mortality in others. The late phase of infection is characterized by pathological hyper-activation of the immune system and significantly elevated inflammatory cytokines such as interleukin-6 (IL-6).[2],[3],[4] This cytokine release syndrome (CRS), or “cytokine storm,” often leads to rapid clinical deterioration and death and requires swift management with medication to suppress the immune system.[4]

Tocilizumab (Genentech, San Francisco, USA) is a humanized recombinant monoclonal antibody and IL-6 receptor antagonist that has historically been used to treat rheumatoid arthritis.[5] Considered off-label for the treatment of COVID-19, rheumatologists and other clinicians suggest it may be a useful tool to combat CRS.[6],[7],[8],[9],[10],[11] However, most of the evidence to support this approach is anecdotal or derived from small case studies.[12],[13],[14],[15] A search of the U. S. National Library of Medicine clinical trials registry identified 23 protocols registered to study tocilizumab in COVID-19 patients.[16] However, all either were in the preparation or recruitment phase or had been withdrawn completely. Reports from clinical trials of tocilizumab in patients with rheumatoid arthritis documented an increased risk of serious infection in patients who received the medication.[17],[18],[19],[20],[21],[22] The few studies that evaluated tocilizumab in COVID-19 patients documented secondary infections as well, though most did not compare groups statistically.[13],[15],[23]

Given the mechanism of action and existing evidence, it is a logical concern that tocilizumab may place patients at higher risk for secondary healthcare-associated infection (HAI). However, no studies to date have assessed the incidence of HAI in COVID patients that received tocilizumab compared to those who did not. The primary objective of this study was to determine the difference in the incidence of secondary healthcare-associated bacterial and fungal infections among patients with COVID-19 given exposure to tocilizumab. We hypothesized that patients who received tocilizumab during their inpatient treatment for COVID-19 had a greater rate of HAI than those who did not receive tocilizumab after controlling for relevant confounders. This study can provide moderate evidence to support clinical decision making for COVID treatment while awaiting the results of clinical trials.


   Methods Top


Study design and sampling

To meet our objective, we conducted a matched retrospective cohort study. We selected patients from two large, acute care hospitals in western Connecticut heavily impacted by the COVID-19 surge between March 1st, and May 31st, 2020. We included patients in the study if they were >18 years old, admitted as inpatients during this timeframe, and billed with the ICD-10 code for COVID-19 (U.07.1). We excluded patients if they had a bacterial or fungal infection present at the time of admission or were taking immunosuppressant medications.

We further refined our sample by identifying all patients prescribed tocilizumab during their inpatient stay. We matched patients using a 1:1 ratio to develop a corresponding control group among patients who did not receive tocilizumab.[24] We used individual matching by age group (10-year increments), gender, and admission to the intensive care unit and excluded patients from the study if they did not successfully match with a control. In total, there were 128 total patients in the study with 64 in each group who received and did not receive tocilizumab, respectively [Figure 1]. We did not follow patients beyond time to event being either infection, discharge or death.
Figure 1: Study enrollment for matched retrospective cohort. N = number

Click here to view


Measures

We collected all variables using manual medical record abstraction. The primary outcome was any healthcare-associated bacterial or fungal infection, including bloodstream, urinary tract, skin, soft tissue, organ-space, and pneumonia. We used the National Healthcare Safety Network (NHSN) definitions to identify infections both associated with and independent of invasive devices (i.e., central line, Foley catheter, ventilator).[25] We documented patients as having the primary outcome if they met all site-specific or device-associated criteria. Patients who met some but not all criteria were not documented as positive for the primary outcome (i.e., positive urine culture with <100,000 cfu/ml). We also documented the infection event date for time-dependent analyses.

The primary exposure variable was any dosage of tocilizumab administered to a patient with COVID-19. We documented the date of first administration for time-dependent analyses.

We included age as a continuous variable in our analysis since matches were performed in increments of 10 years. We also included central line, Foley catheter, and ventilator days as confounders, defined as the number of days a patient had the invasive device from date of placement to date of discontinuation. We also included co-morbidities that may contribute to infection such as diabetes, active cancer, and body mass index (BMI) (continuous). Finally, we included whether the patient received hydroxychloroquine or had surgery during the relevant inpatient stay.

Statistical analyses

We used StataSE 16 for all statistical analyses.[26] We computed descriptive statistics to reflect the number and percentage of patients for each categorical variable and mean with standard deviation for continuous variables. We performed univariate analyses to assess exposure group differences with the Chi-square and independent student's t tests. There were no missing data in this dataset, and the alpha for all hypothesis testing was set a priori at 0.05.

We included tocilizumab as a time-varying variable in all analyses.[27] Entry into the cohort began at admission for all patients to account for immortal time bias. The event date in the analysis corresponded with the infection event date defined by NHSN.[25] We did not follow patients for infection postdischarge and censored patients at date of discharge or death (for those who expired without experiencing the event).

We performed a Kaplan–Meier analysis to assess the crude difference in cumulative probability of HAI across exposure groups and used the log-rank test to determine the difference in survival functions. We also performed Cox regression analysis to determine the hazard ratio, 95% confidence interval (CI), and P value for HAI by exposure group. We included age, central line, Foley catheter, and ventilator days, BMI, diabetes, cancer, administration of hydroxychloroquine, and inpatient surgery in the model to account for hypothesized confounding per the classical definition. Each covariate has an evidence-based association with the outcome and is not in the causal pathway. Finally, we verified the assumption for proportional hazards by examining Schoenfeld residuals.


   Results Top


Sample characteristics

We identified 67 patients who met the inclusion criteria and received tocilizumab during their inpatient stays [Figure 1]. Three patients did not match with any controls and were eliminated from the sample. Of note, two of three patients were between 18 and 21 years old. Given the low prevalence of COVID-19 in this age group during the surge, it is not surprising they failed to match. The remaining 64 patients matched successfully, and we reviewed 128 patient records for exclusion criteria. We identified 18 patients with bacterial or fungal infections present on admission and removed them from the sample (Nunexposed = 13; Nexposed = 5). One patient transferred in from another facility and did not have information available regarding infections at time of admission. After that exclusion, the final sample size was 109.

The mean age of patients in the sample was 56.3 years, and the majority of the sample was male (73.4%) and predominantly non-Hispanic (52.3%) [Table 1]. The majority of patients who did not identify as a race were Hispanic (77.1%). There were no exposure group differences in any of the covariates, though the mean length of follow-up time in the cohort was longer in the exposed group than the unexposed group (10.7 days vs. 7.9 days, respectively). The median time from admission to tocilizumab administration was 3 days (range = 0–12).
Table 1: Descriptive statistics for COVID-19 patients selected into the sample from two Western Connecticut healthcare facilities between March 1 and May 31, 2020

Click here to view


Kaplan-Meier analysis

There were 19 HAIs identified in the sample [Table 2]. The Kaplan–Meier survival curve stratified by exposure group is shown in [Figure 2]. We found there was not a statistically significant difference in the time to event across exposure groups (log-rank test: P = 0.81).
Table 2: Description of healthcare-associated infections experienced by patients in the sample to determine the difference in secondary bacterial and fungal infections following the use of tocilizumab among COVID-19 patients

Click here to view
Figure 2: Kaplan–Meier survival estimates for patients exposed and not exposed to tocilizumab

Click here to view


Cox regression

We verified that the crude and full models met the assumption of proportional hazards. Neither the crude nor the adjusted Cox regression analysis demonstrated a statistically significant difference in the hazard rate of HAI between exposure groups. The crude hazard rate of HAI for patients given tocilizumab was 0.97 times that of patients not given tocilizumab (95% CI = 0.37, 2.52, P = 0.943). The adjusted hazard rate of HAI for patients given tocilizumab was 0.85 times that of patients not given tocilizumab (95% CI = 0.29, 2.52, P = 0.780) after controlling for age, device days, BMI, diabetes, cancer, hydroxychloroquine, and inpatient surgery.


   Discussion Top


Tocilizumab may be a viable treatment for the CRS seen in later stages of COVID-19 infections. Due to its mechanism of action and previous data from the rheumatoid arthritis population, there is a concern regarding the potential increased risk of HAIs with tocilizumab administration.[19] Several clinical trials are underway that test tocilizumab for the treatment of COVID-19 and our study can help for developing treatment protocols. Our study was notable for the lack of statistically different rates of HAIs and bacteremia, but a statistically significant difference in length of stay when comparing COVID-19 patients who did and did not receive tocilizumab.

We hypothesized that patients who received the IL-6 inhibitor would experience a higher incidence of HAI after controlling for confounders such as age, device days, and other risk factors. Our finding of no increased secondary infection rates in COVID-19 patients treated with tocilizumab is reassuring to clinicians who have used or are using this therapy for the treatment of CRS. The CI of the adjusted hazard ratio was between 0.29 and 2.52, however, making the point estimate difficult to interpret.

Other studies had similar findings with no significant differences in rates of bacteremia among those exposed to tocilizumab, although these were calculated as a secondary analysis.[28],[29] The largest observational study of tocilizumab use in COVID-19 completed at Yale University reported a bacteremia rate of 4% in patients administered tocilizumab, lower than rates reported from China and New York City of 8% and 6%, respectively.[29],[30],[31] Our reported bacteremia rate was 5.1% in the patients who were exposed to tocilizumab versus 2.0% (P = 0.623). Although slightly higher than that reported at Yale, the difference is still not statistically meaningful.

In our study, the only statistically significant difference between groups was length of follow-up time. The patients exposed to tocilizumab had a longer time to event of infection, death, and/or discharge. There was one observed outlier in the tocilizumab group that received tocilizumab on day 12 of hospitalization, which likely skewed the results. However, the standard deviations were similar between both groups. Tocilizumab administration has been associated with longer hospital stays, thought to be due to both timing of drug administration and monitoring of potential complications. In our study, although matched for confounders, the patients who received tocilizumab may have had an observed higher clinical burden, which may also require longer hospital stays. A longer hospital stay could also be explained by multiple factors such as lack of clinical improvement, discomfort among providers and limited supply of medication.

This study was limited by the study design as this was not a randomized control trial and is at risk of selection and indication bias. This was also a small sample size with a wide CI which may be leading to a Type II error. A true difference in secondary infection rates may yet exist, and a larger study better powered to detect such a difference would provide further information. One of the significant limitations of this study was the challenge of defining a secondary infection. The NHSN definition for secondary infections has strict diagnostic criteria that may differ from clinical practice. Differentiating co-infection with a bacterial or viral pneumonia on presentation, as well as identifying secondary pneumonias, was difficult. Although a poor potential marker of secondary pneumonias, ventilator-associated events were included and sensitivity analyses that removed these from the analysis did not change the results observed. Finally, we did not follow patients beyond discharge, so the long-term consequences of tocilizumab remain unknown.


   Conclusions Top


Based on this study, it appears that receiving tocilizumab for the treatment of COVID-19 does not increase the incidence of secondary infections. Currently, there are several randomized clinical trials that are underway that test the safety and efficacy of tocilizumab for CRS in COVID-19, our trial can provide some reassurance regarding secondary infection rates.

Research quality and ethics statement

This study was approved by the Institutional Review Board / Ethics Committee approval number 20-12-108-337(c20).. The authors followed applicable EQUATOR Network (http:// www.equator-network.org/) guidelines during the conduct of this research project.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
World Health Organization. Clinical Management of COVID-19: Interim Guidance 27 May 2020; c2020. Available from: https://apps.who.int/iris/bitstream/handle/10665/332196/WHO-2019-nCoV-clinical-2020.5-eng.pdf?sequence=1&isAllowed=y. [Last accessed on 2020 Oct 06].  Back to cited text no. 1
    
2.
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. The Lancet 2020;395:1054-1062.  Back to cited text no. 2
    
3.
Huang D, Lian X, Song F, Ma H, Lian Z, Liang Y, et al. Clinical features of severe patients infected with 2019 novel coronavirus: A systematic review and meta-analysis. Ann Transl Med 2020;8:576.  Back to cited text no. 3
    
4.
Copaescu A, Smibert O, Gibson A, Phillips EJ, Trubiano JA. The role of IL-6 and other mediators in the cytokine storm associated with SARS-CoV-2 infection. J Allergy Clin Immunol 2020;146:518-340.  Back to cited text no. 4
    
5.
Ogata A, Kato Y, Higa S, Yoshizaki K. IL-6 inhibitor for the treatment of rheumatoid arthritis: A comprehensive review. Mod Rheumatol 2019;29:258-67.  Back to cited text no. 5
    
6.
Fu B, Xu X, Wei H. Why tocilizumab could be an effective treatment for severe COVID-19? J Transl Med 2020;18:164.  Back to cited text no. 6
    
7.
Keske Ş, Tekin S, Sait B, İrkören P, Kapmaz M, Çimen C, et al. Appropriate use of tocilizumab in COVID-19 infection. Int J Infect Dis 2020;99:338-43.  Back to cited text no. 7
    
8.
Liu B, Li M, Zhou Z, Guan X, Xiang Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J Autoimmun 2020;111:102452.  Back to cited text no. 8
    
9.
Misra DP, Agarwal V, Gasparyan AY, Zimba O. Rheumatologists' perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Clin Rheumatol 2020;39:2055-62.  Back to cited text no. 9
    
10.
Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A 2020;117:10970-5.  Back to cited text no. 10
    
11.
Zhang C, Wu Z, Li JW, Zhao H, Wang GQ. Cytokine release syndrome in severe COVID-19: Interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents 2020;55:105954.  Back to cited text no. 11
    
12.
Antony SJ, Singh J, de Jesus M, Lance J. Early use of tocilizumab in respiratory failure associated with acute COVID-19 pneumonia in recipients with solid organ transplantation. IDCases. 2020;21:e00888.  Back to cited text no. 12
    
13.
Cai X, Hu X, Ekumi IO, Wang J, An Y, Li Z, et al. Psychological distress and its correlates among COVID-19 survivors during early convalescence across age groups. Am J Geriatr Psychiatry 2020;28:1030-9.  Back to cited text no. 13
    
14.
Cellina M, Orsi M, Bombaci F, Sala M, Marino P, Oliva G. Favorable changes of CT findings in a patient with COVID-19 pneumonia after treatment with tocilizumab. Diagn Interv Imaging 2020;101:323-4.  Back to cited text no. 14
    
15.
Morillas JA, Canosa FM, Srinivas P, Asadi T, Calabrese C, Rajendram P, et al. Tocilizumab therapy in 5 solid and composite tissue transplant recipients with early ARDS due to SARS-CoV-2. Am J Transplant 2020;20:3191-7.  Back to cited text no. 15
    
16.
Bethesda (IL): National Institutes of Health U. S. National Library of Medicine; c2020. Available from: https://clinicaltrials.gov/ct2/results?term=tocilizumab&cond=%22Coronavirus+Infections%22. [Last accessed on 2020 Oct 06].  Back to cited text no. 16
    
17.
Schiff MH, Kremer JM, Jahreis A, Vernon E, Isaacs JD, van Vollenhoven RF. Integrated safety in tocilizumab clinical trials. Arthritis Res Ther 2011;13:R141.  Back to cited text no. 17
    
18.
Singh JA, Cameron C, Noorbaloochi S, Cullis T, Tucker M, Christensen R, et al. Risk of serious infection in biological treatment of patients with rheumatoid arthritis: A systematic review and meta-analysis. The Lancet 2015;386:258-65.  Back to cited text no. 18
    
19.
Iking-Konert C, von Hinüber U, Richter C, Schewenke H, Gürtler I, Kästner P, et al. ROUTINE – A prospective, multicentre, non-interventional, observational study to evaluate the safety and effectiveness of intravenous tocilizumab for the treatment of active rheumatoid arthritis in daily practice in Germany. Rheumatology 2016;55:624-35.  Back to cited text no. 19
    
20.
Ishiguro N, Atsumi T, Harigai M, Mimori T, Nishimoto N, Sumida T, et al. Effectiveness and safety of tocilizumab in achieving clinical and functional remission, and sustaining efficacy in biologics-naive patients with rheumatoid arthritis: The FIRST Bio study. Mod Rheumatol 2017;27:217-26.  Back to cited text no. 20
    
21.
Koike T, Harigai M, Inokuma S, Ishiguro N, Ryu J, Takeuchi T, et al. Effectiveness and safety of tocilizumab: Postmarketing surveillance of 7901 patients with rheumatoid arthritis in Japan. J Rheumatol 2014;41:15-23.  Back to cited text no. 21
    
22.
Pawar A, Desai RJ, Solomon DH, Santiago Ortiz AJ, Gale S, Bao M, et al. Risk of serious infections in tocilizumab versus other biologic drugs in patients with rheumatoid arthritis: A multidatabase cohort study. Ann Rheum Dis 2019;78:456-64.  Back to cited text no. 22
    
23.
Rossotti R, Travi G, Ughi N, Corradin M, Baiguera C, Fumagalli R, et al. Safety and efficacy of anti-il6-receptor tocilizumab use in severe and critical patients affected by coronavirus disease 2019: A comparative analysis. J Infect 2020;81:e11-7.  Back to cited text no. 23
    
24.
Rothman K, Greenland S, Lash T, editors. Design strategies to improve study accuracy. In: Modern Epidemiology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 168-82.  Back to cited text no. 24
    
25.
Washington: Tracking Infections in Acute Care Hospitals/Facilities, National Healthcare Safety Network; c2020. Available from: https://www.cdc.gov/nhsn/acute-care-hospital/index.html. [Last accessed on 2020 Oct 06; Last updated on 2020 Apr 09].  Back to cited text no. 25
    
26.
StataCorp LLC. Stata Statistical Software: Release 16; 2019.  Back to cited text no. 26
    
27.
Jann B. Stata Tip 8: Splitting Time-span records with categorical time-varying covariates. Stat J 2004;4:221-2.  Back to cited text no. 27
    
28.
Campochiaro C, Della-Torre E, Cavalli G, De Luca G, Ripa M, Boffini N, et al. Efficacy and safety of tocilizumab in severe COVID-19 patients: A single-centre retrospective cohort study. Eur J Intern Med 2020;76:43-9.  Back to cited text no. 28
    
29.
Price CC, Altice FL, Shyr Y, Koff A, Pischel L, Goshua G, et al. Tocilizumab treatment for cytokine release syndrome in hospitalized patients with coronavirus disease 2019: Survival and clinical outcomes. Chest 2020;158:1397-408.  Back to cited text no. 29
    
30.
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: Consider cytokine storm syndromes and immunosuppression. The Lancet 2020;395:1033-4.  Back to cited text no. 30
    
31.
Feng Y, Ling Y, Bai T, Xie Y, Huang J, Li J, et al. COVID-19 with different severities: A multicenter study of clinical features. Am J Respir Crit Care Med 2020;201:1380-8.  Back to cited text no. 31
    

Top
Correspondence Address:
Dr. Joanna L Moore
34 Maple Street, Norwalk, Connecticut 06850
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jgid.jgid_358_20

Rights and Permissions


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2]



 

Top
  
 
  Search
 
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
   Introduction
   Results
   Discussion
   Conclusions
   Methods
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed2568    
    Printed34    
    Emailed0    
    PDF Downloaded242    
    Comments [Add]    

Recommend this journal

Sitemap | What's New | Feedback | Copyright and Disclaimer | Contact Us
2008 Journal of Global Infectious Diseases | Published by Wolters Kluwer - Medknow
Online since 10th December, 2008