Journal of Global Infectious DiseasesOfficial Publishing of INDUSEM and OPUS 12 Foundation, Inc. Users online:1243  
Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size     
Home About us Editors Ahead of Print Current Issue Archives Search Instructions Subscribe Advertise Login 
Year : 2022  |  Volume : 14  |  Issue : 1  |  Page : 24-30

Epitope identification and designing a potent multi-epitope vaccine construct against SARS-CoV-2 including the emerging variants

1 Department of Virology, State Viral Research and Diagnostic Laboratory (VRDL), King Institute of Preventive Medicine and Research, Chennai, Tamil Nadu, India
2 Department of Microbiology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu, India
3 Department of Translational Sciences, Institute for Healthcare Education and Translational Sciences, Hyderabad, Telengana, India

Correspondence Address:
Dr. Satish Srinivas Kitambi
Institute for Healthcare Education and Translational Sciences, 10-2-311, Plot 187, Str 4, Cama Manor, West Marredpally, Secunderabad - 500 026, Telengana
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jgid.jgid_96_21

Rights and Permissions

Introduction: The emergence of a novel coronavirus in China has turned into a SARS-CoV-2 pandemic with high fatality. As vaccines are developed through various strategies, their immunogenic potential may drastically vary and thus pose several challenges in offering immune responses against the virus. Methods: In this study, we adopted an immunoinformatics-aided approach for developing a new multi-epitope vaccine construct (MEVC). In silico approach was taken for the identification of B-cell and T-cell epitopes in the Spike protein, for MEVC various cytotoxic T-lymphocyte, helper T-lymphocyte, and B-cell epitopes with the highest affinity for the respective HLA alleles were assembled and joined by linkers. Results: The computational data suggest that the MEVC is nontoxic, nonallergenic and thermostable and elicit both humoral and cell-mediated immune responses. Subsequently, the biological activity of MEVC was assessed by bioinformatic tools using the interaction between the vaccine candidate and the innate immune system receptors TLR3 and TLR4. The epitopes of the construct were analyzed with that of the strains belonging to various clades including the emerging variants having multiple unique mutations in S protein. Conclusions: Due to the advantageous features, the MEVC can be tested in vitro for more practical validation and the study offers immense scope for developing a potential vaccine candidate against SARS-CoV-2 in view of the public health emergency associated with COVID-19 disease caused by SARS-CoV-2.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded91    
    Comments [Add]    

Recommend this journal


Sitemap | What's New | Feedback | Copyright and Disclaimer | Privacy Notice | Contact Us
2008 Journal of Global Infectious Diseases | Published by Wolters Kluwer - Medknow
Online since 10th December, 2008