1 |
A recombinant Leishmania amastigote-specific protein, rLiHyG, with adjuvants, protects against infection with Leishmania infantum |
|
|
| Amanda S. Machado, Daniela P. Lage, Danniele L. Vale, Camila S. Freitas, Flávia P. Linhares, Jamille M.O. Cardoso, Isabela A.G. Pereira, Fernanda F. Ramos, Grasiele S.V. Tavares, Fernanda Ludolf, João A. Oliveira-da-Silva, Raquel S. Bandeira, Aratti C. Simões, Mariana C. Duarte, Jamil S. Oliveira, Myron Christodoulides, Miguel A. Chávez-Fumagalli, Bruno M. Roatt, Vívian T. Martins, Eduardo A.F. Coelho |
|
| Acta Tropica. 2022; : 106412 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
2 |
Covalent Conjugation of Amphotericin B to Hyaluronic Acid: An Injectable Water-Soluble Conjugate with Reduced Toxicity and Anti-Leishmanial Potential |
|
|
| Ricardo Silva-Carvalho, Teresa Leão, Francisco M. Gama, Ana M. Tomás |
|
| Biomacromolecules. 2022; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
3 |
The History of Live Attenuated Centrin Gene-Deleted Leishmania Vaccine Candidates |
|
|
| Greta Volpedo, Parna Bhattacharya, Sreenivas Gannavaram, Thalia Pacheco-Fernandez, Timur Oljuskin, Ranadhir Dey, Abhay R. Satoskar, Hira L. Nakhasi |
|
| Pathogens. 2022; 11(4): 431 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
4 |
Hemoglobin Endocytosis and Intracellular Trafficking: A Novel Way of Heme Acquisition by Leishmania |
|
|
| Irshad Ansari, Rituparna Basak, Amitabha Mukhopadhyay |
|
| Pathogens. 2022; 11(5): 585 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
5 |
Leishmania spp Epitopes in Humans Naturally Resistant to the Disease: Working Toward a Synthetic Vaccine |
|
|
| Magda Melissa Flórez, Rocío Rodríguez, José Antonio Cabrera, Sara M. Robledo, Gabriela Delgado |
|
| Frontiers in Cellular and Infection Microbiology. 2021; 11 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
6 |
Effect of Prophylactic Vaccination with the Membrane-Bound Acid Phosphatase Gene of Leishmania mexicana in the Murine Model of Localized Cutaneous Leishmaniasis |
|
|
| María Angélica Burgos-Reyes, Lidia Baylón-Pacheco, Patricia Espíritu-Gordillo, Silvia Galindo-Gómez, Víctor Tsutsumi, José Luis Rosales-Encina, Márcia Laurenti |
|
| Journal of Immunology Research. 2021; 2021: 1 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
7 |
Screening of medicinal plants unraveled the leishmanicidal credibility of Garcinia cowa; highlighting Norcowanin, a novel anti-leishmanial phytochemical through in-silico study |
|
|
| Nibedita Pyne, Santanu Paul |
|
| Journal of Parasitic Diseases. 2021; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
8 |
A Review of Leishmaniasis: Current Knowledge and Future Directions |
|
|
| Sarah Mann, Katherine Frasca, Sara Scherrer, Andrés F. Henao-Martínez, Sabrina Newman, Poornima Ramanan, José A Suarez |
|
| Current Tropical Medicine Reports. 2021; 8(2): 121 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
9 |
Dendritic cell engineered cTXN as new vaccine prospect against L. donovani |
|
|
| Shashi S. Suman, Akhilesh Kumar, Ashish K. Singh, Ajay Amit, R.K. Topno, K. Pandey, V.N.R. Das, P. Das, Vahab Ali, Sanjiva Bimal |
|
| Cytokine. 2021; 145: 155208 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
10 |
Complement protein C1q binds soluble antigens of Leishmania major (SLA) via the globular head region, activates the classical pathway, and modulates macrophage immune response |
|
|
| Ahmed Al-Qahtani, Mohammed N. Al-Ahdal, Saad Alkahtani |
|
| Journal of King Saud University - Science. 2021; 33(3): 101365 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
11 |
Development of dextrin-amphotericin B formulations for the treatment of Leishmaniasis |
|
|
| R. Silva-Carvalho, J. Fidalgo, K.R. Melo, M.F. Queiroz, S. Leal, H.A. Rocha, T. Cruz, P. Parpot, A.M. Tomás, M. Gama |
|
| International Journal of Biological Macromolecules. 2020; 153: 276 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
12 |
Leishmania lipophosphoglycan components: A potent target for synthetic neoglycoproteins as a vaccine candidate for leishmaniasis |
|
|
| Aiman Saleh A. Mohammed, Weilu Tian, Youqin Zhang, Peng Peng, Fengshan Wang, Tianlu Li |
|
| Carbohydrate Polymers. 2020; 237: 116120 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
13 |
Transcriptomic profiling in Cutaneous Leishmaniasis patients |
|
|
| Nasrin Masoudzadeh, Amir Mizbani, Sima Rafati |
|
| Expert Review of Proteomics. 2020; 17(7-8): 533 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
14 |
Development of nano-carriers for Leishmania vaccine delivery |
|
|
| Anis Askarizadeh, Ali Badiee, Ali Khamesipour |
|
| Expert Opinion on Drug Delivery. 2020; 17(2): 167 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
15 |
Combination of
Mycobacterium indicus pranii
and Heat-Induced Promastigotes Cures Drug-Resistant
Leishmania
Infection: Critical Role of Interleukin-6-Producing Classical Dendritic Cells
|
|
|
| Somaditya Dey, Debarati Mukherjee, Sirin Salma Sultana, Suvadip Mallick, Aritri Dutta, Joydip Ghosh, Aabid Hussain, Biswajyoti Sarkar, Supratim Mandal, Pradyumna Patra, Bhaskar Saha, Chiranjib Pal, De'Broski R. Herbert |
|
| Infection and Immunity. 2020; 88(6) |
|
| [Pubmed] [Google Scholar] [DOI] |
|
16 |
Antileishmanial activity of Urtica dioica extract against zoonotic cutaneous leishmaniasis |
|
|
| Alireza Badirzadeh, Maryam Heidari-Kharaji, Vahid Fallah-Omrani, Hossein Dabiri, Atefeh Araghi, Alireza Salimi Chirani, Walderez O. Dutra |
|
| PLOS Neglected Tropical Diseases. 2020; 14(1): e0007843 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
17 |
A prospective cohort study of Cutaneous Leishmaniasis due to Leishmania major: Dynamics of the Leishmanin skin test and its predictive value for protection against infection and disease |
|
|
| Jihène Bettaieb, Amine Toumi, Wissem Ghawar, Sadok Chlif, Mariem Nouira, Nabil Belhaj-Hamida, Adel Gharbi, Nissaf Ben-Alaya, Dhafer Laouini, Hechmi Louzir, Koussay Dellagi, Afif Ben Salah, Mary Ann McDowell |
|
| PLOS Neglected Tropical Diseases. 2020; 14(8): e0008550 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
18 |
Suicidal Leishmania |
|
|
| Lucie Podešvová, Tereza Leštinová, Eva Horáková, Julius Lukeš, Petr Volf, Vyacheslav Yurchenko |
|
| Pathogens. 2020; 9(2): 79 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
19 |
Antileishmanial Activity of Diterpene lactones from Suregada multiflora and Their Semisynthetic Derivatives |
|
|
| Humaira Y. Gondal, Muhammad Nisar, Muhammad I. Choudhary |
|
| Current Bioactive Compounds. 2020; 16(1): 53 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
20 |
Anti-Leishmanial Vaccines: Assumptions, Approaches, and Annulments |
|
|
| Shubhranshu Zutshi, Sunil Kumar, Prashant Chauhan, Yashwant Bansode, Arathi Nair, Somenath Roy, Arup Sarkar, Bhaskar Saha |
|
| Vaccines. 2019; 7(4): 156 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
21 |
Cytosolic Recognition of Microbes and Pathogens: Inflammasomes in Action |
|
|
| Jenni A. Hayward, Anukriti Mathur, Chinh Ngo, Si Ming Man |
|
| Microbiology and Molecular Biology Reviews. 2018; 82(4) |
|
| [Pubmed] [Google Scholar] [DOI] |
|
22 |
GTPase Sar1 regulates the trafficking and secretion of the virulence factor gp63 in Leishmania |
|
|
| Smriti Parashar, Amitabha Mukhopadhyay |
|
| Journal of Biological Chemistry. 2017; 292(29): 12111 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
23 |
Attenuated Leishmania induce pro-inflammatory mediators and influence leishmanicidal activity by p38 MAPK dependent phagosome maturation in Leishmania donovani co-infected macrophages |
|
|
| Somenath Banerjee, Dipayan Bose, Nabanita Chatterjee, Subhadip Das, Sreeparna Chakraborty, Tanya Das, Krishna Das Saha |
|
| Scientific Reports. 2016; 6(1) |
|
| [Pubmed] [Google Scholar] [DOI] |
|
24 |
Identification of Synthetic and Natural Host Defense Peptides with Leishmanicidal Activity |
|
|
| A. K. Marr, S. Cen, R. E. W. Hancock, W. R. McMaster |
|
| Antimicrobial Agents and Chemotherapy. 2016; 60(4): 2484 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
25 |
Mammalian Parasitic Vaccine: A Consolidated Exposition |
|
|
| Sumbria Deepak, Singla LD |
|
| Journal of Vaccines and Immunology. 2015; 1(1): 050 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
26 |
Identifying vaccine targets for anti-leishmanial vaccine development |
|
|
| Shyam Sundar,Bhawana Singh |
|
| Expert Review of Vaccines. 2014; : 1 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
27 |
Cross-Protective Immunity to Leishmania amazonensis is Mediated by CD4+ and CD8+ Epitopes of Leishmania donovani Nucleoside Hydrolase Terminal Domains |
|
|
| Dirlei Nico,Daniele Crespo Gomes,Marcus VinÃcius Alves-Silva,Elisangela Oliveira Freitas,Alexandre Morrot,Diana Bahia,Marcos Palatnik,Mauricio M. Rodrigues,Clarisa B. Palatnik-de-Sousa |
|
| Frontiers in Immunology. 2014; 5 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
28 |
Exploring the Role of Medicinal Plant-Based Immunomodulators for Effective Therapy of Leishmaniasis |
|
|
| Garima Chouhan,Mohammad Islamuddin,Dinkar Sahal,Farhat Afrin |
|
| Frontiers in Immunology. 2014; 5 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
29 |
Leishmania spp. Proteome Data Sets: A Comprehensive Resource for Vaccine Development to Target Visceral Leishmaniasis |
|
|
| Toni Aebischer |
|
| Frontiers in Immunology. 2014; 5 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
30 |
Experimental Validation of Multi-Epitope Peptides Including Promising MHC Class I- and II-Restricted Epitopes of Four Known Leishmania infantum Proteins |
|
|
| Maria Agallou,Evita Athanasiou,Olga Koutsoni,Eleni Dotsika,Evdokia Karagouni |
|
| Frontiers in Immunology. 2014; 5 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
31 |
Visceral Leishmaniasis: Advancements in Vaccine Development via Classical and Molecular Approaches |
|
|
| Sumit Joshi,Keerti Rawat,Narendra Kumar Yadav,Vikash Kumar,Mohammad Imran Siddiqi,Anuradha Dube |
|
| Frontiers in Immunology. 2014; 5 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
32 |
Macrophage Cytokines: Involvement in Immunity and Infectious Diseases |
|
|
| Guillermo Arango Duque,Albert Descoteaux |
|
| Frontiers in Immunology. 2014; 5 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
33 |
Proteome Profiling of Human Cutaneous Leishmaniasis Lesion |
|
|
| Claire da Silva Santos,Sanaz Attarha,Ravi Kanth Saini,Viviane Boaventura,Jackson Costa,Ricardo Khouri,Manoel Barral-Netto,Cláudia Ida Brodskyn,Serhiy Souchelnytskyi |
|
| Journal of Investigative Dermatology. 2014; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
34 |
Leishmania genome analysis and high-throughput immunological screening identifies tuzin as a novel vaccine candidate against visceral leishmaniasis |
|
|
| Bhavana Sethu Lakshmi,Ruobing Wang,Rentala Madhubala |
|
| Vaccine. 2014; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
35 |
A comparative evaluation of efficacy of chemotherapy, immunotherapy and immunochemotherapy in visceral leishmaniasis – an experimental study |
|
|
| Jyoti Joshi,Nancy Malla,Sukhbir Kaur |
|
| Parasitology International. 2014; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
36 |
FOXP3 expression and frequency of regulatory T cells in healed individuals from Leishmania major infection and the asymptomatic cases |
|
|
| Fariborz Bahrami,Haiedeh Darabi,Farhad Riazi-Rad,Vahid Khaze,Soheila Ajdary,Mohammad Hossein Alimohammadian |
|
| Human Immunology. 2014; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
37 |
Immune signal transduction in leishmaniasis from natural to artificial systems: Role of feedback loop insertion |
|
|
| Milsee Mol,Milind S. Patole,Shailza Singh |
|
| Biochimica et Biophysica Acta (BBA) - General Subjects. 2014; 1840(1): 71 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
38 |
Isobenzofuranone derivatives exhibit antileishmanial effect by inhibiting type II DNA topoisomerase and inducing host response |
|
|
| Amartya Mishra,Jayaraman Vinayagam,Sourav Saha,Sayan Chowdhury,Somenath Roychowdhury,Parasuraman Jaisankar,Hemanta K. Majumder |
|
| Pharmacology Research & Perspectives. 2014; 2(6): n/a |
|
| [Pubmed] [Google Scholar] [DOI] |
|
39 |
Chronic infection by Leishmania amazonensis mediated through MAPK ERK mechanisms |
|
|
| Pedro A. Martinez,Christine A. Petersen |
|
| Immunologic Research. 2014; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
40 |
Vaccination model for visceral leishmaniasis with infective immigrants |
|
|
| Ibrahim M. ELmojtaba,J.Y.T. Mugisha,Mohsin H.A. Hashim |
|
| Mathematical Methods in the Applied Sciences. 2013; 36(2): 216 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
41 |
Investigation of antileishmanial activities of [email protected] nanoparticles on biological properties of L. tropica and L. infantum parasites, in vitro |
|
|
| Adil M. Allahverdiyev,Emrah Sefik Abamor,Melahat Bagirova,Serap Yesilkir Baydar,Sezen Canim Ates,Figen Kaya,Cengiz Kaya,Miriam Rafailovich |
|
| Experimental Parasitology. 2013; 135(1): 55 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
42 |
Micro/nanoparticle adjuvants for antileishmanial vaccines: Present and future trends |
|
|
| Ali Badiee,Vahid Heravi Shargh,Ali Khamesipour,Mahmoud Reza Jaafari |
|
| Vaccine. 2013; 31(5): 735 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
43 |
Interactions of antiparasitic alkaloids withLeishmaniaprotein targets: a molecular docking analysis |
|
|
| Ifedayo Victor Ogungbe,Joseph D Ng,William N Setzer |
|
| Future Medicinal Chemistry. 2013; 5(15): 1777 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
44 |
Cheminformatic models based on machine learning for pyruvate kinase inhibitors of Leishmania mexicana |
|
|
| Salma Jamal,Vinod Scaria |
|
| BMC Bioinformatics. 2013; 14(1): 329 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
45 |
Characterization of Leishmania infantum thiol-dependent reductase 1 and evaluation of its potential to induce immune protection |
|
|
| A. M. SILVA,J. TAVARES,R. SILVESTRE,A. OUAISSI,G. H. COOMBS,A. CORDEIRO-da-SILVA |
|
| Parasite Immunology. 2012; 34(6): 345 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
46 |
Comparative assessment of a DNA and protein Leishmania donovani gamma glutamyl cysteine synthetase vaccine to cross-protect against murine cutaneous leishmaniasis caused by L. major or L. mexicana infection |
|
|
| S.A. Campbell,J. Alawa,B. Doro,F.L. Henriquez,C.W. Roberts,A. Nok,C.B.I. Alawa,M. Alsaadi,A.B. Mullen,K.C. Carter |
|
| Vaccine. 2012; 30(7): 1357 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
47 |
Oral immunization using live Lactococcus lactis co-expressing LACK and IL-12 protects BALB/c mice against Leishmania major infection |
|
|
| Felix Hugentobler,Raphaël B. Di Roberto,Joshua Gillard,Benoit Cousineau |
|
| Vaccine. 2012; 30(39): 5726 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
48 |
Leishmaniasis cutánea |
|
|
| Julián Díaz Sánchez,Sagrario Barrientos Serrano,Silvia Morell Mañas |
|
| FMC - Formación Médica Continuada en Atención Primaria. 2012; 19(3): 117 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
49 |
TLR-mediated distinct IFN-?/IL-10 pattern induces protective immunity against murine visceral leishmaniasis |
|
|
| Joydeep Paul,Subir Karmakar,Tripti De |
|
| European Journal of Immunology. 2012; 42(8): 2087 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
50 |
Proteoliposomes in nanobiotechnology |
|
|
| P. Ciancaglini,A. M. S. Simão,M. Bolean,J. L. Millán,C. F. Rigos,J. S. Yoneda,M. C. Colhone,R. G. Stabeli |
|
| Biophysical Reviews. 2012; 4(1): 67 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
51 |
Innate Immunity and Leishmania Vaccination Strategies |
|
|
| Ron Birnbaum,Noah Craft |
|
| Dermatologic Clinics. 2011; 29(1): 89 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
52 |
Preparation of highly infective Leishmania promastigotes by cultivation on SNB-9 biphasic medium |
|
|
| Igor Grekov,Milena Svobodová,Eva Nohýnková,Marie Lipoldová |
|
| Journal of Microbiological Methods. 2011; 87(3): 273 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
53 |
Leishmaniasis: complexity at the host–pathogen interface |
|
|
| Paul Kaye,Phillip Scott |
|
| Nature Reviews Microbiology. 2011; 9(8): 604 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
54 |
Actualités sur les leishmanioses viscérales |
|
|
| B. Faucher,R. Piarroux |
|
| La Revue de Médecine Interne. 2011; 32(9): 544 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
55 |
Visceral leishmaniasis: immunology and prospects for a vaccine |
|
|
| P. M. Kaye,T. Aebischer |
|
| Clinical Microbiology and Infection. 2011; 17(10): 1462 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
56 |
Substrate Preferences and Catalytic Parameters Determined by Structural Characteristics of Sterol 14a-Demethylase (CYP51) from Leishmania infantum |
|
|
| Tatiana Y. Hargrove, Zdzislaw Wawrzak, Jialin Liu, W. David Nes, Michael R. Waterman, Galina I. Lepesheva |
|
| Journal of Biological Chemistry. 2011; 286(30): 26838 |
|
| [Pubmed] [Google Scholar] [DOI] |
|